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Abstract. This talk is devoted to review the status of theoretical calculations of ε′/ε. The focus is mainly
on recent developments in non-lattice approaches to hadronic matrix elements.

PACS. 13.25.Es Decays of K mesons – 11.30.Er CP violation

1 Introduction

CP violation in the neutral kaon system is characterized
by the following ratios

η+− ≡ A(KL → π+π−)
A(KS → π+π−)

� ε + ε′ (1.1)

η00 ≡ A(KL → π0π0)
A(KS → π0π0)

� ε − 2 ε′ . (1.2)

While ε is a measure of CP violation in K−K̄ oscillations,
ε′ describes CP violation in |∆S| = 1 transitions. Both ε
and ε′ are now known to be non-zero: the PDG quotes [1]
|ε| = (2.282 ± 0.017) × 10−3, Φε = (43 ± 0.5)o, while the
world average for ε′/ε is [2]
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= (16.7 ± 1.6) × 10−4 (1.3)

On the theoretical side ε′/ε is expressed as follows
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(1.4)

in terms of isospin amplitudes A0 and A2 (describing K0

transitions to two-pion states with J = 0, CP = +1 and
isospin I = 0 or I = 2) and strong phases χ0,2, whose
definition is given by:

A[K0 → π+π−] = A0 eiχ0 +
1√
2

A2 eiχ2 (1.5)

A[K0 → π0π0] = A0 eiχ0 −
√

2 A2 eiχ2 . (1.6)

The phenomenological finding that ReA2
ReA0

∼ 1
22 (∆I = 1

2
rule) implies a dynamical suppression of ε′, while χ0−χ2 ∼
50o implies that ε′/ε has a small imaginary part.
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The calculation of nonleptonic kaon amplitudes re-
quires control not only over the underlying weak pro-
cess at short distance but also on the effects induced by
strong interactions from short- to long-distances, where
non-perturbative effects became important. By integra-
ting out heavy degrees of freedom in the underlying theory
one derives the effective strangeness-changing hamiltonian
at the renormalization scale µ:

H∆S=1
eff =

GF√
2

VudV
∗
us

∑
i

Ci(µ) Qi(µ) (1.7)

Wilson coefficients Ci(µ)= zi(µ)−yi(µ)(VtdV
∗
ts)/(VudV

∗
us)

encode short distance information (masses of heavy
particles, CKM factors), are perturbatively calculable,
and are known at NLO in αs [3]. The calculation of
〈ππ|Qi(µ)|K〉 requires non-perturbative methods capable
to keep track of scale and scheme dependence of local ope-
rators, as observables do not depend on these conventional
choices.

In terms of Wilson coefficients and local operators ε′/ε
has the following expression

∣∣∣ε
′

ε

∣∣∣ = Im(VtdV
∗
ts) ·

[
P (1/2) − P (3/2)

]
(1.8)

P (1/2) = r
∑

i

yi(µ)
Disp[〈Qi(µ)〉0]

cos χ0
(1 − ΩIB) (1.9)

P (3/2) =
r

ω

∑
i

yi(µ)
Disp[〈Qi(µ)〉2]

cos χ2
(1.10)

with r =
GF ω

2|ε|ReA0
and ω =

ReA2

ReA0
. Modulo isospin-

breaking corrections denoted by ΩIB, P (1/2) and P (3/2)

represent the contributions to ε′/ε due to I = 0 and
I = 2 final states (〈Qi〉0,2 denote matrix elements with
pions in I = 0 or I = 2). The dominant contribu-
tion to P (1/2) comes from the gluonic penguin Q6, while
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P (3/2) is dominated by the electroweak penguin Q8 [4].
In standard analyses one uses as input from phenomeno-
logy Im(VtdV

∗
ts) = (1.31 ± 0.1) × 10−4, r, and ω, while

theory input is yi(µ), 〈Q6(µ)〉0 and 〈Q8(µ)〉2, as well as
the isospin-breaking factor ΩIB . Presently, the dominant
uncertainties reside in 〈Q6(µ)〉0, 〈Q8(µ)〉2, and ΩIB . For
calculations based on lattice QCD I refer to the talk by L.
Giusti [5], while here I focus on a selection of recent non-
lattice results, with no attempt to cover all recent work in
this field.

2 Matrix elements beyond factorization

In discussing K → ππ matrix elements two organizing
principles prove very useful:
1. Chiral symmetry and Chiral Perturbation Theory .
This is relevant due to the nature of K and π, Gold-
stone modes associated with spontaneous breaking of chi-
ral symmetry. As a consequence, matrix elements admit
a low energy expansion in (p/Λχ)2n, n = 0, 1, ..., where
p2 ∼ M2

π , M2
K , while Λχ ∼ 1 GeV.

2. 1/Nc expansion. At large Nc four-quark operators fac-
torize in the product of chiral currents and densities, with
known hadronization. At LO in ChPT this implies:
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K
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)2

Deviations from factorization are parameterized by the
Bi factors, according to 〈Qi〉 = 〈Qi〉∞ · Bi. I now discuss
attempts to go both beyond factorization (at leading
chiral order) and beyond leading chiral order.

Electroweak penguins

Chiral symmetry relates K → ππ matrix elements of Q7,8
to the correlator ΠLR(q2) [6,7,8], related to the transverse
part of 〈0|T (

(d̄LγµuL) (ūRγνdR)
) |0〉. At leading chiral or-

der, using dimensional regularization and MS subtraction,
the operators Q7 and Q8 bosonize as follows:

Q7(µ) → Ô

[
3(d − 1)µ4−d

(4π)d/2Γ (d/2)

∫ ∞

0
dQ2 Qd ΠLR(Q2)

]

MS

Q8(µ) → Ô

[
1

Cw(µ)
µ6 ΠLR(µ2) + O(1/µ2)

]

in terms of the chiral operator Ô = 〈λUQU†〉. In intuitive
terms one can state that 〈Q7〉 is given by the area under
the curve in Fig. 1 after subtraction of the tail, which gene-
rates an UV divergence. On the other hand, 〈Q8〉 governs
the normalization of the divergent tail, modulo the calcu-
lable and scheme-dependent coefficient Cw(µ). An OPE
calculation of ΠLR(Q2) in the deep Euclidean region al-
lows one to obtain Cw, and therefore to assign to both
Q7 and Q8 the needed scale and scheme dependence. The
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Fig. 1. Electroweak penguins in pictures
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Fig. 2. Recent determinations of 〈Q8〉2
LR correlator is special because the corresponding spec-
tral function ρ(s) = 1

π ImΠLR(s) is experimentally known
from τ decays, and this in turn allows for a data-based
evaluation of 〈Q7,8〉0,2 via dispersion relations. Theore-
tical uncertainties arise since the dispersive integrals ex-
tend from threshold to s = ∞, while data points stop at
s = m2

τ . The numerical evaluation of [6] is based on com-
plementing τ data with QCD chiral sum rules (RWM) as
well as the use of finite-energy sum rules (FESR). RWM
allows one to map out the correlator at various Q2 with
increasing uncertainties as Q2 grows (see Fig. 1). On the
other hand FESRs determine the coefficients of the asym-
ptotic expansion at high Q2. The resulting behavior is
represented in Fig. 1 by the continuous curves starting at
Q2 = 4GeV2.

In Fig. 2 I report a compilation of results for 〈Q8〉2
from several recent calculations, using different techni-
ques. The lattice data (extrapolated to chiral limit) are
in the quenched approximation and quoted error is stati-
stical only. Within errors, there is a reasonable agreement
between lattice and dispersive results. The agreement per-
sists after including estimates for NLO chiral corrections.
For example, the results of [12] and [6] compare as follows:

〈(ππ)I=2|Q8(2 GeV)|K〉LATT = (0.69 ± 0.12) GeV3

〈(ππ)I=2|Q8(2 GeV)|K〉DISP = (1.10 ± 0.36) GeV3

Gluonic penguins

A very interesting recent calculation of Q6 beyond facto-
rization is reported in [13]. The authors show that, inclu-
ding subleading effects of order nf/Nc, Q6 hadronizes at
leading chiral order (O(p2)) as follows:

Q6(µ) → 〈λDµU†DµU〉
{−16L5〈q̄q〉2

F 6 +

8nfµ4−d

(4π)d/2Γ (d/2)F 4

∫ ∞

0
dQ2 Qd−2 W(Q2)

}

MS
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where W(Q2) is related to the transverse part
of the 4-point function 〈0|T (

(s̄LqR) (q̄LdR) (d̄RγµuR)
(ūRγνsR)) |0〉 with soft current insertions. Model indepen-
dent information on the correlator W(Q2) is known only
at low Q2 (from CHPT) and high Q2 (from the OPE).
The authors construct a meromorphic interpolating form
of W(Q2) (as required by large Nc QCD) with only a fi-
nite number of pole singularities. The residues are fixed
in order to match the model-independent long and short
distance results. Numerically, large corrections to facto-
rization are found, corresponding to B6(1GeV) ∼ 3, as
well as a correlated enhancement of ReA0, through 〈Q2〉0.
In principle the method is improvable, by adding more
constraints, and it would be very interesting to check the
stability of the result against addition of more poles. Si-
milar results have been found so far within ENJL model
[14], but not within lattice calculations (where B6 < 1).

At NLO in CHPT, one needs to include chiral loops
with one insertion of Q6 from order p2, as well as local con-
tributions induced by Q6 at order p4. The loops are known
to be very important in the I = 0 channel due to strong
rescattering, and provide a sizable enhancement (∼ 40%)
of 〈Qi〉0 [4,15]. The NLO local couplings are only known
at leading order in 1/Nc (factorization) or within models.
The induced uncertainty can be estimated by requiring
that the size of 1/Nc corrections to the couplings be com-
parable to the size of their scale dependent component,
suppressed in the 1/Nc counting [15].

Table 1. Summary table of isospin violation in ε′/ε . Each
entry is in units of 10−2. See text and [16]

α = 0 α �= 0

LO LO+NLO LO LO+NLO

ΩIB 11.7 15.9 ± 4.5 18.0 ± 6.5 22.7 ± 7.6

∆0 −0.004 −0.41 ± 0.05 8.7 ± 3.0 8.3 ± 3.6

f5/2 0 0 0 8.3 ± 2.4
Ωeff 11.7 16.3 ± 4.5 9.3 ± 5.8 6.0 ± 8.0

3 Isospin violation in ε′/ε

It is well known that isospin-breaking effects (of order
α or (mu − md)/ΛQCD) can play an important role in
the prediction of ε′/ε , as they are enhanced by the ratio
ReA0
ReA2

∼ 22. Historically such effects have been collected in
the parameter ΩIB appearing in (1.9), defined as

ΩIB =
ReA0

ReA2
· ImAnon−Q8

2

ImA0
. (3.1)

A complete analysis of first order isospin breaking [16] re-
veals that other effects have to be included at the same
order, and ΩIB → Ωeff = ΩIB − f5/2 − ∆0. Here f5/2 is
the ∆I = 5/2 contribution (O(α)) to the overall norma-
lization, while ∆0 represents the isospin breaking effect in
the amplitude A0.

In [16] a complete calculation to NLO in CHPT is per-
formed. The full loop corrections are included, while local
couplings are estimated in leading 1/Nc. Potentially large
deviations from large Nc predictions for the LO couplings
have been taken into account in assessing the errors. Re-
sults are reported in Table 1. It is interesting to note that
the final figure for Ωeff results from significant cancellati-
ons among competing effects.

4 Summary

It is not possible in such a limited space to report about
all recent calculations of ε′/ε . A more complete list of
references can be found in [17].

My personal view is that we have reached a reasona-
ble agreement between lattice and dispersive calculations
of Q8, which translates into a vertical band in the P (1/2)-
P (3/2) plane (see Fig. 3). There is at the moment no con-
sensus for the Q6 contribution, which would determine the
vertical coordinate in the plot. Requiring that the Stan-
dard Model reproduces the experimental result (diagonal
band in the plot) implies the range 〈Q6(2GeV)〉NDR

0 ∼
(−0.75±0.15) GeV3, or B

(1/2),NDR
6 (2 GeV) ∼ 1.26±0.25.
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Fig. 3. Theory versus experiment

The above considerations lead to the simple message
that ε′/ε is not (yet?) a quantitative test of the Standard
Model, despite formidable theoretical efforts. However, gi-
ven the considerable refinement of analytic and lattice
techniques achieved in the past few years, the reduction of
theoretical uncertainties to an acceptable level might be
within reach.
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